
Profile4D 1.0

2003-10-03

What is it?
The Profile4D component is a group of methods that make it very easy to simultaneously profile multiple blocks of
code very quickly and without making a mess of your existing code.

How it works.
You determine an area of code that you feel is running too slowly. Before you begin to optimize the code you need
to know exactly which part is running slowest. Even the best developers are often surprised at which code is
actually slowest. We will call this area of code that we want to test the Main Area.

You place a call to Profile4D_Init and the beginning of the Main area and a call to Profile4D_Deinit at the
end of this area. Profile4D_Init sets up an array that will be used to keep track of information for each block of
code being profiled within the Main Area. It also starts the Main Area timer. Profile4D_Deinit will be explained
in a moment.

Now, identify blocks of code within the Main area (which might span multiple methods) that you think might be the
cause of the slowness of the Main Area. Place a call to Profile4D_Start() at the beginning of each of these
blocks and a call to Profile4D_Finish() at the end of each of these blocks. Pass a description of the block of
code to these two methods and make sure you pass exactly the same description to each pair.

Profile4D_Start simply starts (or restarts) a timer for that block of code. Profile4D_Finish stops the timer
and increments the time taken for this execution. Profile4D_Finish also increments the number of executions
for this block of code.

You can have as many Profile4D_Start/Profile4D_Finish pairs as you want between each
Profile4D_Init/Profile4D_Deinit pair.

Once the code gets to Profile4D_Deinit, the main timer is stopped and the developer is asked where they want
the profiling information saved to. The information is then saved to disk where it can be interpreted later.

You can also pause the profiling by calling Profile4D_Pause and then continue profiling by calling
Profile4D_Resume. Using these commands you can effectively stop any profiling timers for however long you
like. An example where this is useful would be in a routine that has to stop to ask the user for information. You
could pause just before the dialog and then resume after. Profile4D will report statistics as if a pause never
happened.

Now you can decide what parts of your code need optimization. Change your code how you like and then run it
again and compare the results. Repeat as needed.

When you are finished profiling, do a global search for "Profile4D_" and then delete those lines of code. So it
does mess your code up a little, but not too bad, right? :-)

What it won't do.
Profile4D is not made to nest Profile4D_Init/Profile4D_Deinit pairs within the same process. Don't do this.
However, there is no problem with nesting Profile4D_Start/Profile4D_Finish pairs. If you do, just remember
to interpret the results accordingly. For example, the subtotals will become meaningless.

Error checking
There is very little error checking in any of the methods. This is partly because there is very little that can go wrong

and mostly because all the Profile4D_ methods need to execute very quickly so that they affect the profiling data
as little as possible. So it is up to the developer to make sure that all the Profile4D_ pairs line up properly and
are in the right order. For example, if you have a Profile4D_Start() line in method aaa, and this method
happens to be called from another process where Profile4D_Init hasn't been called, 4D might complain!

What does it report?
The file that Profile4D creates is formatted to be viewed directly in a text editor like BBEdit using a monospaced
font. It can also be dragged into a spreadsheet and keep the columns correctly. Mostly I wanted it to look nice with
a simple text editor so that no extra steps needed to be taken to view the data.

Here is an example (admittedly made up) of a report Profile4D created:

The first line in the columns corresponds to time spent in the Main Area (between the Profile4D_Init/
Profile4D_Deinit pair). Then there is one line each (sorted by total execution time) for all the code blocks you
wanted to profile. At the bottom, the subtotals show how all the blocks together stacked up against the total time in
the Main Area.

At the bottom of each report the following explanation is given:

Installation

When you install the Profile4D component, you will be installing only the following eleven public methods. Nothing
else is installed. The component will compile with All Variables Typed. No inter-process variables are used. A
handful of process variables are used and all have the Profile4D_ prefix.

Compiler_Profile Profile4D_Start Profile4D_GetMaxDescriptionLeng
Profile4D_Init Profile4D_Finish Profile4D_ArrayResize
Profile4D_Deinit Profile4D_Pad Profile4D_ArrayAppend
Profile4D_Pause Profile4D_Resume

Parameters
You will only use four methods directly.

Profile4D_Init No parameters
Profile4D_Deinit No parameters
Profile4D_Start(Description) Text (Pass the unique description for this block of code.)
Profile4D_Finish(Description) Text (Pass the same value passed to Profile4D_Start.)
Profile4D_Pause No parameters
Profile4D_Resume No parameters

Example
Here is a very simplistic example of a single method we might want to profile. Here is the method before we start:

DIAGNOSTIC_BeginMethod (Current method name)
PRINT_LockArea
PRINT_PrepareForNewMessage
PRINT_InsertHeader
PRINT_InsertTextSelection
PRINT_FinishedInsertingMessages
PRINT_DoPrint (True)
PRINT_UnlockArea
DIAGNOSTIC_EndMethod

Lets say that we suspect the calls to PRINT_InsertHeader, PRINT_InsertTextSelection, and
PRINT_DoPrint. We would modify the code to look like this:

DIAGNOSTIC_BeginMethod (Current method name)

Profile4D_Init `We want the main timer to start here
PRINT_LockArea
PRINT_PrepareForNewMessage
Profile4D_Start("PRINT_InsertHeader") `We start a profile part timer
PRINT_InsertHeader
Profile4D_Finish("PRINT_InsertHeader") `We end a profile part timer
Profile4D_Start("PRINT_InsertTextSelection")
PRINT_InsertTextSelection
Profile4D_Finish("PRINT_InsertTextSelection")
PRINT_FinishedInsertingMessages
Profile4D_Start("PRINT_DoPrint")
PRINT_DoPrint (True)
Profile4D_Finish("PRINT_DoPrint")
PRINT_UnlockArea
Profile4D_Deinit `The main timer stops here

DIAGNOSTIC_EndMethod

After running the method we can view the report and see what is taking the longest. Maybe we would find out that
PRINT_InsertTextSelection is taking 86% of the entire time. So we would next delete all the Profile4D calls
except for the Init and Deinit methods. Then we would open PRINT_InsertTextSelection and insert some start/
finish calls within the method and rerun the method.

Just yesterday I did something similar for an import routine I had. I was able to find two individual lines of code that
together were taking 90% of execution time! I had just created the methods that these two lines of code called and
assumed that they were pretty fast. Obviously they weren't. So I tried a different approach and tested and the two
lines of code went down to 2% of the total! Profiling made a big difference and in a place I hadn't suspected.

Legal Stuff

Profile4D is freeware and may be given or changed however you like. Of course, I'm not responsible for any
problems you might encounter so use it at your own risk! However, if you find any bugs I wouldn't mind knowing
about them and there is a good chance I might even fix them :-)

Thanks and good luck with your optimizations!

Cannon Smith
P.O. Box 65
Hill Spring, AB Canada
T0K 1E0
(403) 626-3236
<can-nyk@agt.net>
<www.synergyfarmsolutions.com>

cannon@synergyfarmsolutions.com

